ANALYTICAL STUDY ON BEHAVIOUR OF CONCRETE STRUCTURAL ELEMENTS SUBJECTED TO IMPACT LOADING

M.SAKTHIVEL* S.JEYAMURALI** P.KRISHNA KUMAR*, M.HEMA***

*Assistant professor, Department of Civil Engtneeri ** Design Engineer, Megha Engineering Infrastructures Itd, Tuticorin, India.
***Assistant professor, Department of Civil Engineering,
Vickram college of Engineering, Madural, India

ABSTRACT

The impact loads on structures such as accidental effect from transportation, blasting, gunshots, projectile impact from terrorist attacks can cause a structure to sudden failure. So there is a need of dynamic loading design instead of static loading for the structures to save many lives. The numerical technique is the better economical way than experimental technique to predict the possible failure mode of concrete members subjected to impact loading. The present analytical stydy is to investigate thre behaviour of concrete structural elements subjected to impact loading by using finite element analysis software AUTODYN 12.0.1. The structural elements such cube cylinder and beam were modelled and low velocity impact loading was applied to examine the compression, tension and flexural behaviour of concrete elements subjected to impact loading. The damage level was monitored and the Energy absorption capacity (toughness index) ofthe structural elements weredetermined and presented.

KEYWORD: Impact load, Energy absorption, low velocity impact load, AUTODYN 12.0.1

1.0 INTRODUCTIO

In many structural or mechanical design problems the requirement is to provide proof That the structure remains substantially intact, even though damaged. Finite element analysis (FEA) is a numerical method, which provides solution to analyze all structures. The numerical investigations were performed with commercial software AUTODYN version 12.0.1. Concrete may sometime be required to withstand dynamic loads due to impact or explosion. Civil structure often experiences various dynamic loads. Some of them are: Shock loads, Blast loads, Explosion, blast phenomenon and Impact loads. Impact loads are the loads resulting from collision between two bodies during the small interval of time. One of the most important types
of impact test is drop weight hammer impact, which helps to determine the energy absorption capacity (toughness) i.e., Extent to which amaterial absorbs energy without fracture. AUTODYN 12.0.1 is used to simulate the elements subjected to drop weight hammer.

2.0 NUMERICAL MODELLING

The AUTODYN program has much finite element analysis capability ranging from a simple, non-linear explicit dynamic analysis where it Builds the model, Apply loads and obtain the solution and Review the result. Structural analysis is probably the most common application of the finite element method. It is mainly based on four principles. The following are the principles: Lagrange solvers, Euler solvers, ALE solvers (Arbitrary Lagrange Euler),
SPH solver (Smooth Particle Hydrodynamics) using these we can define the material behaviour, structural behaviour, contactintesaction, fluid structure interaction.

2.1 Lagrange Solver

Lagrangian mechanics is a re-formulation of classical mechanics using the principle of Stationary action. In Lagrangian mechanics, the trajeetory of a system of particles is derived by solving the Lagrange equations in one of two forms, either the Lagrange equations of the first kind or the Lagrange equations of the second kind. It is a combination of NEWTON, D ALEMBERTZ, and HAMILTON'S RRINCIPLE. The core element of Lagrangian mechanics is the Lagrangian function, which summarizes the dynanics of the entire system in a very simple expression. Lagrange solvers generally use mesh-based lagrangian methods.

2.2 ANALYSIS OF VARIOUS ELEMENTS USING LAGRANGE SOLVER

All the analysis of the specimen given below are done using AUTODYN.12.0.1.

2.2.1 Analysis of Cube Element

A concrete cube of size $150 \mathrm{~mm} \times 150 \mathrm{~mm} \times 150 \mathrm{~mm}$ using M35 grade is simulated in AUTODYN 12.0.1.The element types for this model are shown in Table 1. The M35 grade cube and S-4340 steel ball were used. The material model was tabulated in Table 2.

Table 1 Element type

Material type	AUTODYN Element
Concrete	M35 Grade
Steel Ball	S-4340

Table 2 Material Model

Material name	Equation of state	Strength model
Concrete- 35MPA	P-ALPHA	RHT CONCRETE
S-4340	LINEAR	JOHNSON COOK

The material name is Concrete 35 Mpa and equation of state indicates p -alpha (i.e.), palpha model to describe the pore compaction hardening effects and thus give a realistic response in the high pressure regime. Strength model is RHT concrete; it is an advanced plasticity model for brittle materials developed by Werner Riedal et al [9]. It is particularly useful for modelling the dynamic loading of concrete.S-4340, the first two digits indicates a 1.8% of Nickel-Chromium-Molybdenum alloy steel the last two digits indicates carbon content roughly 0.4 percent.

2.2.2 Analysis Of Cylinder Element

Cylinder of size $150 \mathrm{~mm} \times 300 \mathrm{~mm}$ using M35 grade concrete and steel ball of S-4340. Element, Equation of state, Strength model are same as above and it is 3 -D model and the units are $\mathbf{m m}, \mathbf{m s}, \mathbf{m g}$.

2.2.3 Analysis of Beam Element

Beam of size $500 \mathrm{~mm} \times 100 \mathrm{~mm} \times 100 \mathrm{~mm}$ using M35 grade concrete and steel ball of S-4340. Element, Equation of state, Strength model are same as above and it is a 3-D model and the units are $\mathbf{m m}, \mathbf{m s}, \mathbf{m g}$.

3.0 ANALYTICAL INVESTIGATION

The specimens that are used for the analysis are cube element, cylinder element and the Beam element. The Low velocity impact loading was applied by steel ball of S-4340 Element on the concrete models to examine their compression, tension and flexural behaviour subjected to impact loading.

3.1 Before Impact Load and its Corresponding Gauge Points

Fig.1. Cube specimen before impact load and the gauge points

Fig.2. Cylinder specimen before impact load and the gauge points

Fig.3. Beam elements before impact and the gauge points
The figures mentioned above are the specimens before xhibiting impact loading and the corresponding gange points.

3.2 After Impact: Specimen and its Damage Effects

Fig. 4.Damage level of cube after impact

Fig.5.Damage level of cylinder after impact

Fig.6. Damage level of beam after impact
The figures mentioned above are the specimens after exhibiting impact loading and the corresponding damage results.

The given results are based on the principle of LAGRANGE SOLVER

Safety factor	$=0.2$
Cycle limit	$=6175$
Time limit	$=0.6 \mathrm{~ms}$
Time increment	$=0.05 \mathrm{~ms}$

Calculation of energy absorption capacity for cylinder

3.4 RELATIVE GRAPHS: TIME Vs ENERGY ABSORBTION, VELOCITY

Fig.7. Relation between energy absorption capacity and time for cube specimen

Fig.8. Relation between velocity and time

Fig.9. Relation between time and velocity of gauge points

Fig.10. Relation between energy absorption capacity and time for cylinder specimen

Fig.11.Relation between energy absorption capacity and time for beam specimen

Fig.12. Relation between time and velocity of gauge points

4.0 RESULTS \& DISCUSSION

A dynamic load of $\mathbf{8 8 5 1 0 0} \mathrm{mg}, \mathbf{1 4 0 5 5 0 0} \mathrm{mg}$ was applied at a distance of $\mathbf{1 5 0 m m}$ from the model elements and corresponding energy absorption capacity was calculated and damage levels were indicated. Impact load is being represented by time-total energy curve varying at $\mathbf{0}$,
0.533, 0.6, and 0.738 ms respectively. Energy absorption capacity for gauge points was determined and tabulated in Table 3 corresponding to number of cycles.

Table 3 Energy Absorption capacity of the specimens

ELEMENTS	ENERGY ABSORBTION CAPACITY $(\boldsymbol{\mu J})$	NO. OF CYCLES
Cube	3943×10^{7}	6175
Cylinder	6262×10^{7}	7320
Beam	626.1×10^{8}	5955

5.0 CONCLUSION

The Structural models such as cube, cylinder, beam and the steel ball were numerically simulated by using the Finite Element Analysis (FEA) software namely AUTODYN 12.0.1. The Low velocity impact load was applied on the numerical concrete models to obtain their impact resistance. The damage effects were monitored and the energy absorption capacity (toughness index) of cube, cylinder and beam elements were determined and presented. The damage effects of the concrete models subjected to impact loading is found to be severe. So the Design Engineers are suggested to consider the design of dynamic loading for the structures which may be subjected to impact loads. The measured value is for the low velocity load and this in further can be replaced and processed, with the high velocity impact load which can define even more unknown damage effects on these concrete structur

REFERENCES

[1] Bazle. A. Gama and John .W.Gillespie,"Finite element modelling of impact, damage evolution and penetration of thick - section composites", IJIE, Vol.38,(2011)PP. 181-197.
[2] Lin Jing , Zhihua Wang , V.P.W. Shim,LongmaoZhao,"Deformation/failure modes and blast resistance of cylindrical sandwich shells comprising two aluminum face-sheets and an aluminum foam core,subjected to air blast loading ",IJIE,Vol.71.(2014)PP.60-72
[3] Lei Mao, Stephanie Barnett , David Begg,"Numerical simulation of ultrahigh performance fibre reinforced concrete panel subjected to blast loading", IJIE, Vol.64,(2014)PP. 91-100
[4] K.Micallef,J.Sagaseta,M.FernándezRuiz,"Assessing unching shear failure in R.C. flat slabs subjected tolocalizedimpactloading",(2014)IJIE, Vol.71,PP.17-33
[5] Ye Yuan, P.J. Tan, "Deformation and failure of rectangular plates subjected to impulsive loadings of zero-period and uniform momentum",IJIE, Vol.35,(2013)PP. 46-60 [6] A.N.Dancygier, D.Z.Yankelevsky and C.Jaegermann, "Response of high performance concrete plates to impact on non-deforming projectiles",IJIE,Vol.34,(2007)PP.1768-1779
[7] X.X.Zhang, G.Ruiz, R.C.Yu, "Fracture behaviour of steel fibre reinforced concrete at a wide range of loading rates", IJIE, Vol.71,(2014) PP.89-96
[8] JuechunXu, Chengqing Wu, Zhong-Xian Li"Analysis of direct shear failure mode for RC slabs under external explosive loading", IJIE, Vol. 69,(2014) PP. 136-14
[9] Werner Riedel, Nobuaki Kawai, Ken-Ichi Kondo,"Numerical assessment for impact strength measurements in concrete materials", IJIE,Vol.36,(2009)PP.283-293.
[10] J.L. Meriam, L.G. Kraige; "Engineering Dynamies", fifth edition.
[11] Madhujitmukhopathyay; "Dynamics of Structures", fourth edition

